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Abstract

Given a large graph G and k agents on this graph, we
consider the Voronoi tessellation induced by the graph
distance. Each agent gets control of the portion of
the graph that is closer to itself than to any other
agent. We study the limit law of the vector Vor :=
(V1/n, V2/n, ..., Vk/n), whose i’th coordinate records the
fraction of vertices of G controlled by the i’th agent, as
n tends to infinity. We show that if G is a uniform
random tree, and the agents are placed uniformly at
random, the limit law of Vor is uniform on the (k − 1)-
dimensional simplex. In particular, when k = 2, the
two agents each get a uniform random fraction of the
territory. In fact, we prove the result directly on the
Brownian continuum random tree (CRT), and we also
prove the same result for a “higher genus” analogue of
the CRT that we call the continuum random unicellular
map, indexed by a genus parameter g ≥ 0. As a key step
of independent interest, we study the case when G is a
random planar embedded graph with a finite number
of faces. The main idea of the proof is to show that
Vor has the same distribution as another partition of
mass Int := (I1/n, I2/n, ..., Ik/n) where Ij is the contour
length separating the i-th agent from the next one in
clockwise order around the graph.

1 Introduction

1.1 Motivation and informal presentation of
the main result. We are interested in the following
problem, which models the partitioning of a territory
between k ≥ 2 agents who are in competition with one
another. These agents live on a large graph G, and each
agent takes control of the portion of the graph which is
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closer to itself than to any other agent. We study the
k-dimensional vector whose i’th coordinate records the
fraction of vertices of G controlled by the i’th agent.
More precisely, we will try to understand the law of this
vector when the agents are placed uniformly at random
on the graph G, and when the number of vertices of the
graph becomes very large.
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agent 2
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n

Figure 1: Examples of Voronoi competition between
k = 2 agents on a deterministic graph. (a) On an n-
cycle, each agent gets about half of the graph. (b) On a
star made of

√
n spikes, the winner takes almost all the

graph.

Let us start with two instructive examples (Fig-
ure 1). If k = 2 and if G is an n-cycle, then, regardless
of the positions of the agents, each of them controls
n
2 vertices – up to a constant error term depending on
the parity of n and the distance between them. There-
fore when n tends to infinity, the “Voronoi partition of
mass” converges to the deterministic vector ( 1

2 ,
1
2 ). For

the second example, again take k = 2 but now G is a
star made of

√
n spikes, each of length

√
n (we omit

integer parts in this informal discussion). Then when n
is very large, the agent that is closest to the center of
the star gets almost all the graph, namely a proportion
1 − O(n−1/2) of the vertices. Therefore, the Voronoi
partition of mass converges in law to a “winner takes it
all” situation, formally to an average of two Dirac laws
1
2δ(1,0) + 1

2δ(0,1).
The two preceeding examples involve rather excep-

tional graphs. This motivates the idea of studying the
problem on random graphs, which is what we do in this
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paper.
Our first result is an explicit determination of the

limiting law in the case of (unrooted) uniform random
labeled trees.

Theorem 1. Fix k ≥ 2. Let Tn be a uniform random
labeled tree on n vertices and let v1, v2, . . . , vk be k
random uniform vertices of Tn. Then the k-dimensional
vector whose i’th coordinate is equal to the proportion of
vertices of Tn that are closer to vi than to any other vj
converges to a uniform vector on the (k−1)-dimensional
simplex, as n goes to infinity.

This theorem also holds if one takes Tn to be uniform
on any of the following classes of (unlabelled) trees:
rooted plane trees, rooted unembedded binary trees,
rooted unembedded trees, and unrooted unembedded
trees; is also holds for “tree-like” families of planar maps
such as stacked triangulations and outerplanar maps;
and it holds (in the labelled setting) for any subcritical
graph family. Indeed, the property in which we are
interested is, in fact, a property of the scaling limit
of these objects, which is universal and is known1 to
be the Brownian continuum random tree (CRT) for
all these models, see [Ald91a, Ald91b, MM11, HM12,
Stu14, AM08, Car16, PSW16]. For this reason, after
this informal introduction, most of our results will be
stated (and our proofs will be carried out) directly in a
continuum setting. However, one should keep in mind
that our results capture the behaviour of very large, but
finite, random graphs.

This work was originally motivated by two rather
different settings. The first is the subject of a conjec-
ture of one of the authors, that has its roots at the in-
tersection of mathematical physics and the probability
theory of random surfaces. In [Cha16], the third author
conjectures that the result of Theorem 1 holds for ran-
dom plane graphs, or more generally random embedded
graphs of any fixed genus g. This conjecture is still wide
open, despite a remarkable paper of Guitter who proved
it for k = 2 and g = 0 [Gui17b] (see also [Gui17a]).
The conjecture of [Cha16] is especially intruiguing be-
cause embedded graphs of different genera g are known
to belong to different universality classes – they have
different scaling limits.

A second, less involved setting which possesses uni-
form Voronoi partitions is the stochastic mean-field

1Strictly speaking, the papers [AM08, Car16, PSW16] only

prove that the CRT is the scaling limit of these objects for the

Gromov-Hausdorff topology, whereas we need here the Gromov-
Hausdorff-Prokhorov topology (see below). However, it is not

hard to see that the arguments in these papers also enable one

to prove this stronger convergence. We thank a referee for this
remark.

model of distance. Take the complete graph Kn on
n vertices, and assign independent and identically dis-
tributed random lengths to its edges, with Exp(1) dis-
tribution. Then we may grow the Voronoi cells of k
uniformly chosen agents as follows. Let us work on the
event of high probability (for large n) that the k agents
are distinct. Cells grow along the edges at speed 1, and
their sizes are given by the numbers of vertices they
contain. We start with k cells of size 1. Suppose that
at some time t, the cells have sizes s1, s2, . . . , sk and a
new vertex has just been added to some cell. Then the
closest vertex among the remaining n − s1 − · · · − sk
vertices to any of the cells is at distance given by the
minimum of (s1+ · · ·+sk)(n−s1−· · ·−sk) independent
Exp(1) random variables (here, we use the memoryless
property of the exponential distribution). Moreover, it
is closest to cell i with probability si/(s1 + · · ·+ sk). It
follows that if we just look at the instants when some
cell grows, then the cell sizes perform a k-color Pólya’s
urn process, run until there are n balls in total in the
urn. It is well known that the proportions of the differ-
ent colors converge, as n tends to infinity, to the uniform
distribution on the (k − 1)-dimensional simplex.

This unexpected coincidence motivates the follow-
ing question:

Which models of random graphs give rise to
uniform random Voronoi partitions of mass,

and why?

In this work we show that the CRT has this property.
In fact, we show much more. A tree, once embedded in
the plane, is nothing but a plane graph with a unique
face, which led us to the following generalisation: we
study the Voronoi vector in the case when G is a graph
embedded in a fixed surface, with a fixed number of
faces, and a fixed number of agents in each face – under
the uniform measure, when the graph becomes large.
We characterize the limit law of this vector in terms of
another random vector, related to the interval lengths,
which is easier to analyse. In particular, we exhibit
an infinite family of models that have uniform Voronoi
partitions of mass, namely embedded graphs with one
face on any fixed surface. We also obtain the explicit
limit law in the case of planar graphs with a bounded
number of faces.

Is it worth noticing the striking similarity between
our results and the conjecture of [Cha16]. Both papers
deal with random embedded graphs, and both involve
(proved here and conjecturally there) uniform Voronoi
partitions of mass. However, this similarity is very
mysterious, since the graphs we study in this paper are
very different from uniform random embedded graphs.
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Indeed, we consider a regime in which graphs have a
finite number of cycles (finite excess), while the random
embedded graphs considered in [Cha16] have a linear
excess with high probability. Their scaling limits are
also very different [LG13, Mie13]. We are not able to
explain, not even at a heuristic level, why their Voronoi
partitions would behave similarly.

We end this informal introduction here and proceed
to a more precise presentation of our results. As
explained above, the statements of our results are more
transparent at the level of continuum objects, so we
will start with a short presentation of the required
formalism.

1.2 On the formalism chosen for graph limits.
In order to deal with Voronoi partitions of mass, it is
convenient to think of graphs as measured metric spaces.
Formally, this means that for us a graph will be a triple
(V (G), d, µ) where V (G) is the set of vertices, d the
graph distance on V (G), and µ the uniform measure on
V (G). (We will often abuse notation and write (G, d, µ)
for the same object.) This point of view enables us to
take scaling limits in the sense of the Gromov-Hausdorff-
Prokhorov distance, see e.g. [ADH13]. For example, if
(Tn, dn, µn) is a uniform random tree on n vertices, then
we have the convergence in distribution [Ald91a, LG05]:(

Tn,
1√
n
dn, µn

)
−→ (T, d, µ),

where (T, d, µ) is a continuum random metric space
called the Brownian continuum random tree (CRT). In
all the examples of random graphs considered in this
paper, it is straightforward to see that the Voronoi par-
tition of mass of the scaling limit is the limit in distri-
bution of the Voronoi partition of mass of the discrete
random graphs. This follows using Proposition 10 of
[Mie09], which shows that GHP convergence of a se-
quence of measured metric spaces implies the conver-
gence (in the appropriate topology) of the same spaces
equipped with k independent uniformly-sampled points.
For example, Theorem 1 is a direct consequence of The-
orem 2 below.

1.3 Main results.

Theorem 2. (Trees) Let (T, d, µ) be the CRT, with
distance d and mass measure µ. Let X1, . . . , Xk ∈ T be
k independent samples from µ in the tree T . Partition
the tree into k Voronoi cells C1, . . . , Ck, where Ci is
the part of T closer to Xi than to any other Xj. Then
the vector Vor(T ) := (µ(Ci))i≤k is a uniform partition
of unity (i.e., uniformly distributed on the (k − 1)-
dimensional simplex).

We now state the extension to higher genus. The
continuum random unicellular map (CRUM) is a gener-
alization of the CRT that is defined for each connected
orientable surface. If the surface is the sphere, the
CRUM is the CRT. For a general surface S, the CRUM
on S is the scaling limit of random embedded graphs on
S having a single face, in the same way that the CRT
is the scaling limit of random plane trees.

Theorem 3. (Unicellular maps) Fix an orientable
surface S, and let (M,d, µ) be the CRUM on S. Let
X1, . . . , Xk ∈ M be k independent samples from µ in
M . Partition M into k Voronoi cells C1, . . . , Ck. Then
the vector Vor(M) := (µ(Ci))i≤k is a uniform partition
of unity.

In fact, our more general result (Theorem 6 be-
low) enables us to deal with random embedded graphs
on any surface and with an arbitrary number of
faces. It takes an explicit form in genus 0. For
` ≥ 1 and k1, k2, . . . , k` ≥ 1, the CRM of signa-
ture (0; k1, k2, . . . , k`), denoted CRM(0; k1, k2, . . . , k`)
for short, can be thought of as a continuum random
plane graph, with ` faces numbered from 1 to `, and hav-
ing ki marked vertices in the i’th face for each i ∈ [1..`].
The CRM(0; k1, k2, . . . , k`) is the scaling limit of ran-
dom plane graphs with ` numbered faces having ki
marked vertices in the i’th face, under the uniform mea-
sure when their total number of vertices tends to infin-
ity. We have:

Theorem 4. (Plane graphs) For ` ≥ 1 and for
k1, . . . , k`≥1, let (M,d, µ) be the CRM(0; k1, k2, . . . , k`),

and let X
(i)
1 , . . . , X

(i)
ki
∈ M denote the distinguished

points in the i’th face, for i ∈ [1..`]. Let

Vor(M) = (µ(C
(i)
j )) 1≤i≤`

1≤j≤ki

denote the Voronoi partition of mass induced by the

marked points, where C
(i)
j is the subset of M formed by

points closer to X
(i)
j than to any other of the

∑`
i=1 ki

marked points. Then Vor(M) has the same law as the
vector

(DiU
(i)
j ) 1≤i≤`

1≤j≤ki

where (D1, D2, . . . , D`) follows a Dirichlet distribution
of parameters

(
k1+

1
2 , . . . , k`+

1
2

)
and where, for i ∈ [1..`],

the vector (U
(i)
j )1≤j≤ki is a uniform partition of unity,

all of these variables being independent.

We emphasize once again that the two previous
theorems give the limit law of the Voronoi cells in the
corresponding model of finite random plane graphs,
when their size tends to infinity. We also observe that
the case of the CRT is contained in the last theorem,
with ` = 1 and k1 = k.
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1.4 Plan of the paper. In Section 2 we consider
the case of trees. This will also be an introduction
to our proof strategy, which consists in showing, by
induction on the number k of agents, that the vector
Vor(T ) has the same distribution as another vector
called the “interval vector”. As announced we will
work directly on continuum structures, and in fact we
will use a reduction to a model of random graphs with
exponential edge-lengths. In Section 3 we apply the
same program to graphs with more faces embedded
on any orientable surface2. The strategy is similar,
but there are more cases to consider in the induction.
Finally in Section 4, we present a bijective proof of the
asymptotic equidistribution between the interval and
the Voronoi vectors, in the case of trees, that works
directly at the discrete level. This bijection more or less
follows the arguments given in the proofs on continuum
objects, but by constructing it explicitly we hope to
emphasize that our results truly apply to finite objects.

1.5 Additional remarks. In a later version of this
work, we will present the proofs for non-orientable sur-
faces, that follow a similar pattern yet require new ideas.
A curious consequence of this more general result is
that the following classes of uniform random unembed-
ded graphs have uniform random Voronoi partitions of
mass in the limit: random unicycles, random barbell
graphs, and random theta graphs (the case of theta
graphs follows already from the present paper, namely
from Theorem 3 when S is a torus; the other two follow
by considering CRUM’s on the projective plane and on
the Klein bottle, respectively).

1.6 Acknowledgments. This work was started and
continued at the wonderful 11’th and 12’th workshops
on Probability and Combinatorics held at the Bellairs
Institute of McGill University in Barbados in April 2016
and April 2017. We thank the other participants for in-
teresting discussions, especially Marie Albenque, Igor
Kortchemski and Remco van der Hofstad. We also
acknowledge the hospitality of the excellent program
combi17: Combinatorics and Interactions held at IHP
in Paris in 2017, where some of the crucial ideas were
discovered. LAB was partially supported by NSERC
Discovery Grant 341845. OA was supported in part by
NSERC. GC’s research is supported by the European
Research Council, grant ERC-2016-STG 716083 “Com-
biTop”. EF’s research is supported by the ANR grant
“GATO”, ANR-16-CE40-0009-01. CG’s research is sup-
ported by EPSRC Fellowship EP/N004833/1.

2In fact our results hold for arbitrary surfaces, orientable or

not, but we prefer to keep the present paper shorter and focus on

orientable surfaces only.

2 Voronoi and interval vectors in random trees

Let us start by taking a paragraph to give a formal
definition of the CRT. This is standard, but we make
rather extensive use of the idea that the CRT may be
endowed with a contour order, and we prefer to specify
precisely what this means. As alluded to above, the
CRT is a random metric space, (T, d, µ). We define it
using a standard Brownian excursion. This is a certain
random continuous function e : [0, 1] → [0,∞) such
that e(0) = e(1) = 0 and e(t) > 0 for t ∈ (0, 1); the
precise details of its distribution are unimportant for
the present discussion, but it may be usefully thought
of as the scaling limit of an excursion of simple random
walk. First define a pseudo-metric d on [0, 1] via

d(s, t) = 2e(s) + 2e(t)− 4 min
s∧t≤r≤s∨t

e(r).

Now define an equivalence relation ∼ by declaring s ∼ t
if d(s, t) = 0. Then set T to be [0, 1]/∼, endowed with
the metric d. We write p : [0, 1]→ T for the projection
map onto the tree, and let µ be the push-forward of the
Lebesgue measure on [0, 1] onto T (we refer to this as
the uniform measure on T ). It is a (non-trivial) fact
that points picked from µ are with probability 1 leaves
(that is, points whose removal does not disconnect
the space). The leaves of the metric space T inherit
a natural clockwise contour order from this encoding
(where we imagine starting at the equivalence class of
0): if s, t ∈ [0, 1] with s < t and p(s) and p(t) are leaves,
then we say that p(s) precedes p(t) in the clockwise
ordering.

Let A = {X1, . . . , Xk}, where X1, . . . , Xk are k
independent samples from µ in T , listed in contour
order. Concretely, let U1, . . . , Uk be the order statistics
of k independent and identically distributed uniform
random variables on [0, 1], and set Xi = p(Ui) for
1 ≤ i ≤ k. For 1 ≤ i ≤ k, let Ci be the Voronoi
cell of Xi:

Ci = {y ∈ T : d(y,A) = d(y,Xi)}.

We let Vor(T ) be the vector (µ(C1), . . . , µ(Ck)}, called
the Voronoi vector of T .

On the other hand the clockwise contour of T is split
into k “intervals” I1, . . . , Ik, where Ii is the part of the
contour between Xi and Xi+1, namely Ii = p([Ui, Ui+1])
for 1 ≤ i ≤ k − 1 and Ik = p([Uk, 1] ∪ [0, U1]). We
let Int(T ) be the vector (µ(I1), . . . , µ(Ik)), called the
interval vector of T , and note that µ(Ii) = Ui+1 − Ui
for 1 ≤ i ≤ k − 1 and µ(Ik) = 1 − Uk + U1. The main
result we obtain in this section is:

Theorem 5. Let (T, µ, d) be the Brownian CRT. Let
X1, . . . , Xk be k independent samples from µ in T , listed

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited



in contour order. Then Vor(T ) and Int(T ) have the
same distribution.

Theorem 5 easily implies Theorem 2 (hence also
Theorem 1), since it is clear that the interval vector
is a uniform partition of unity.

Remark 1. At the level of discrete structures, let T kn
be the set of plane trees T with n edges and k marked
corners of respective labels 1, . . . , k, the label-ordering
being consistent with the ordering of a clockwise walk
around the tree (starting from the corner of label 1).
For 1 ≤ i ≤ k the corner of label i is denoted ci and
its incident vertex is denoted ai. The vertices a1, . . . , ak
are called the marked vertices of T , and the set of these
vertices is denoted by A.

The contour of T is split into k intervals I1, . . . , Ik
(with Ii the part of the contour between ci and ci+1)
and we let ui := length(Ii)/(2n), and set Int(T ) :=
(u1, . . . , uk). On the other hand, we define Ci to be
the Voronoi cell of the marked vertex ai, i.e., the set
of vertices p such that d(p, ai) = d(p,A); and we let
vi := |Ci|/n, and set Vor(T ) := (v1, . . . , vk). Then
Theorem 5 entails that, for T a uniformly random tree
in T kn , as n→∞, Vor(T ) and Int(T ) are asymptotically
equidistributed. (Note that here we are picking uniform
corners rather than uniform vertices; this is equivalent
to picking points uniformly in the domain of the discrete
contour process. Since the discrete contour process,
suitably rescaled, converges in distribution to 2e, it is
easy to see that this also yields uniform vertices in the
limit.) We will present in Section 4 a bijection on T kn
that explains this result.

Our first proof of Theorem 5, presented in this
section, proceeds on the k-leaf skeletons of the CRT
rather than on the CRT itself. As we briefly recall here,
these can be seen as the scaling limits of the kernels of
random trees in T kn as n→∞. For T ∈ T kn , the core of
T is the tree ξ(T ) obtained from T by greedily deleting
every non-marked leaf (together with its incident edge)
until only marked leaves remain. The kernel of T is then
the tree κ(T ) obtained from ξ(T ) by erasing every non-
marked vertex of degree 2, see Figure 2 for an example.
Note that to every edge e ∈ κ(T ) corresponds a path P
in ξ(T ) such that all the non-extremal vertices of P are
non-marked of degree 2, and each of the two extremities
of P is either marked or of degree greater than 2.

We now define a tree-skeleton to be a plane tree
S with all vertices of degree 1 or 3, with the k leaves
carrying distinct labels in {1, . . . , k} and such that the
labels 1, . . . , k occur in clockwise order around S. The
leaf of label i is denoted ai. We let Sk be the set of
tree-skeletons with k leaves (note that, for k ≥ 3, a tree

1
2

3

4

5

1 2

3

4

5

Figure 2: Top: a plane tree with 5 marked corners.
Bottom: the associated core (the vertices that also
belong to the kernel are colored gray).

in Sk can be turned bijectively into a rooted binary tree
with k − 2 nodes, upon considering the node connected
to the leaf of label 1 as the root-node, hence |Sk| is
the (k − 2)’th Catalan number). A tree-skeleton with
edge-lengths is defined to be a tree-skeleton S where
every edge e is assigned a positive real value called
its length, and denoted λ(e). We denote by Sk the
set of tree-skeletons with edge-lengths and k leaves,
a1, . . . , ak. Any S ∈ Sk is a 1-dimensional metric
space, each edge e ∈ S being considered as a line-
segment of length λ(e). The total length of S is denoted
L(S). Let A = {a1, . . . , ak} be the set of leaves. For
1 ≤ i ≤ k the Voronoi cell of ai is the (connected) set
Ci := {p ∈ S : d(p, ai) = d(p,A)}. We let wi := λ(Ci)
be the total length of Ci; the vector (w1, . . . , wk) is
called the Voronoi vector of S and is denoted by Vor(S)
(note that if there is no 1-dimensional intersection of
Voronoi cells, then the components of Vor(S) add up
to L(S)). On the other hand, the contour of S is
split into k intervals I1, . . . , Ik, with Ii the part of the
contour between ai and ai+1. We let zi := λ(Ii) be the
total length of Ii; the vector (z1, . . . , zk) is called the
Interval vector of S and is denoted Int(S) (note that
the components of Int(S) add up to 2L(S)).

We will consider random tree-skeletons under some
specific distributions. The Exp-uniform distribution on
Sk consists in picking a tree-skeleton S ∈ Sk uniformly
at random, and then assigning to each edge e ∈ S an
independent length λ(e) following an Exp(1) distribu-
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tion. Equivalently, if the edges of S are (arbitrarily)
ordered as e1, . . . , e2k−3, then we may sample the total
length L following a Gamma law of parameter 2k − 3,
and then sample a uniformly random split of L, as
L = λ1 + · · · + λ2k−3, and take λi to be the length
of ei. The Tree-uniform distribution on Sk is defined
similarly, except that L is now distributed according to
the law of density

(2.1) fm(x) =
2

Γ(m+1
2 )

xme−x
2

, x ≥ 0,

withm = 2k−3 the number of edges in the skeleton (this
law also corresponds to the square-root of a Gamma law
of parameter k − 1).

Let T be a tree chosen uniformly at random from
T kn , and let κ(T ) be its kernel (where each edge of the
kernel carries a length-parameter to record the length
of the corresponding path in the core). Then it is well
known (see equation (49) of [Ald93]) that, as n → ∞
and the edge-lengths in κ(T ) are divided by

√
n, κ(T )

converges to a random tree-skeleton in Sk with the Tree-
uniform distribution. At the continuous level, one can
also directly extract the skeleton S ∈ Sk out of the CRT
T , and alternatively one can also directly generate S
(under the Tree-uniform distribution) by the so-called
line-breaking construction [Ald91a] (which will not be
used here).

With this useful formalism introduced, we can now
proceed with the proof of Theorem 5, which we split
into 3 lemmas. The first lemma says that it is enough
to prove equidistribution at the level of the skeletons,
while the second one enables us to work under the
Exp-uniform distribution. The core of our argument
is contained in the proof of the third lemma.

Lemma 1. Showing Theorem 5 reduces to showing the
following statement:

(?) For S ∈ Sk under the Tree-uniform distribution,
the vectors 2Vor(S) and Int(S) are equidistributed.

Proof. Let T be the CRT with its k ordered uniform
random leaves X1, . . . , Xk. Let S be the skeleton
extracted from T , which is in Sk under the Tree-uniform
distribution. T \ S consists of a (countably infinite)
collection of subtrees. Let I1, . . . , Ik be the interval
vector of S and, for 1 ≤ i ≤ k, let Ci be the Voronoi cell
of Xi in S. Then it is easy to see that the i’th interval of
T may be recovered by just adding back in the subtrees
of T attached to S at some point of Ii, and the i’th
Voronoi cell may be recovered by adding the subtrees
attached to S at some point of Ci. Now, the subtrees
of T attached to S have exchangeable masses and are

attached independently to uniformly random points of
S (this is perhaps most easily seen using Aldous’ line-
breaking construction [Ald91a]) and so if the vectors
2Vor(S) and Int(S) have the same distribution, so do
the vectors they induce in T .

The next lemma follows from the fact that multi-
plying the distances in a tree by an independent random
constant has the same effect on both the Voronoi and
interval vectors.

Lemma 2. The statement (?) in Lemma 1 is equivalent
to the following statement:

(??) For S ∈ Sk under the Exp-uniform distribution, the
vectors 2Vor(S) and Int(S) are equidistributed.

It now remains to show the following (which is
actually the core of the proof):

Lemma 3. The statement (??) in Lemma 2 holds true.

Proof. The proof is by induction on k ≥ 2. For
k = 2 the result is trivial. Indeed in that case, S
consists of a single edge of length L (following an Exp(1)
distribution) connecting the two leaves, and we have
Vor(S) = (L/2, L/2) and Int(S) = (L,L).

Now assume k ≥ 3. We refer to Figure 3 for an
illustration of our discussion. Let S ∈ Sk be sampled
from the Exp-uniform distribution. Let e be the shortest
edge incident to a leaf. The edge e is called the fuse-
edge, and its extremity of degree 1 (resp. 3) is called
the fuse-leaf (resp. fuse-node); we denote by ν the fuse-
node. The two edges after e in counterclockwise order
around ν are denoted e′, e′′; and the corner between e′

and e′′ is called the fuse-end corner.
Consider the operation of simultaneously “burning”

(starting from the leaf) the extremity of length x of each
of the k edges connected to a leaf, i.e., the length of
every such edge is decreased by x as in Figure 3. The
fuse-edge is completely burned and the fuse-node ν has
its degree decreased to 2. We now cut at ν (i.e., we
split it into two leaves) so that we get two components
U, V that are tree-skeletons with edge-lengths, where U
(resp. V ) is the component containing e′ (resp. e′′).
The root-leaf of U (resp. V ) is the one resulting from
splitting ν. Let p be the number of leaves of U and
q the number of leaves of V (note that p, q ≥ 2 and
p+ q = k + 1, so that p and q are smaller than k).

Consider the root-leaves of U, V to have label 1.
Since the fuse-leaf is a uniformly random leaf of S, every
tree-skeleton in Sp (resp. Sq) is equally likely for U
(resp. for V ). Moreover by the memoryless property
of the exponential law, the edge-lengths in U and in
V are independent and follow an Exp(1) distribution.
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Figure 3: Top: a tree-skeleton in S7, where the fuse-leaf
is surrounded (leaf labels are not indicated). Middle:
burning a part x of every edge incident to a leaf, where
x is the length of the fuse-edge. Bottom: the two
components resulting from cutting at the fuse-node (the
root-leaf in each component is crossed).

Hence U (resp. V ) follows the Exp-uniform distribution
on Sp (resp. Sq). Let Vor(U) = (u1, . . . , up) and
Vor(V ) = (v1, . . . , vq), and let ` be the label (in S) of the
fuse-leaf. Note that Vor(U) and Vor(V ) are independent
when conditioning only on p and `. Let us introduce
the following notation: for ~z = (z1, . . . , zr) a vector and
i ∈ [1..r], the i-shift of ~z is the cyclic shift of ~z that
puts z1 in the ith position; for x ∈ R, x + ~z denotes
the vector (z1 + x, . . . , zr + x). Clearly, if the fuse-
leaf has label `, then Vor(S) is the `-shift of the vector
x+ (u1 + v1, v2, . . . , vq, u2, . . . , up).

Regarding interval vectors, we change a little our
conventions to better establish the parallel with Voronoi
vectors. We now call V the component containing
e′, and let q be its number of leaves, and call U the
component containing e′′, and let p be its number of
leaves. We still consider the root-leaf of V to have label
1 within V , but the root-leaf of U is now considered to
have label 2 (so that it is at the end of the 1st interval
of U). This is just a single shift of the labels in U and
does not change the fact that U follows the Exp-uniform
distribution on Sp (and V also follows the Exp-uniform
distribution on Sq). Let ` ∈ [1..k] be the label of the
interval (in S) that contains the fuse-end corner (i.e.,
this interval starts at the leaf of label `). Let Int(U) =

(ũ1, . . . , ũp) and Int(V ) = (ṽ1, . . . , ṽq) (note that Int(U)
and Int(V ) are independent when conditioning only on
p and `). Then it is easy to see that Int(S) is the `-shift
of the vector 2x+ (ũ1 + ṽ1, ṽ2, . . . , ṽq, ũ2, . . . , ũp).

Hence, if for ` ∈ [1..k] and p ∈ [2..k − 1] we let Ep,`
be the event that the component containing e′ has p
leaves and the fuse-leaf has label `, and let Ẽp,` be the
event that the component containing e′′ has p leaves
and the interval containing the fuse-end corner is the
`-th interval, then we find that Vor(S) conditioned on
Ep,` has the same distribution as Int(S) conditioned on

Ẽp,` (we use induction on the number of leaves, which
guarantees that 2Vor(U) is distributed as Int(U) and
2 Vor(V ) is distributed as Int(V )). Since the events
Ep,` and Ẽp,` clearly have the same probability (which

is equal to |Sp||Sq|
k|Sk| ), we conclude that 2 Vor(S) and

Int(S) are equidistributed on Sk under the Exp-uniform
distribution.

Remark 2. This concludes the proof of Theorem 2.
The proof of Lemma 3 can be formulated as a corre-
spondence on Sk (preserving the Exp-uniform distribu-
tion) that transforms 2Vor(S) into Int(S), while involv-
ing k−1 cutting/merging operations. As we will explain
in Section 4 the analogous mapping on discrete trees
can be formulated as an effective bijection that maps
(asymptotically) the Voronoi vector to the interval vec-
tor.

3 Voronoi and interval vectors in random maps
of fixed signature

We now generalize the results of the previous section to
the context of maps with fixed genus and a fixed number
of faces. After introducing the framework of maps of
fixed signature and describing their scaling limits, we
will establish the equidistribution of the Voronoi and
interval vectors in this setting.

3.1 Maps of fixed signature and their scaling
limits. A map M is a connected graph G (possibly with
loops and multiple edges) embedded on a compact ori-
entable surface Σ, such that all components of Σ\G are
homeomophic to a topological disk; these components
are called the faces of M . The genus of M is the genus
of the surface Σ on which it embeds. In the following,
we will rather use the ribbon-graph representation of a
map, i.e., a map is just a connected graph where a cyclic
order is specified for the incident half-edges around ev-
ery vertex. This information is enough to retrieve the
contours of the faces, and also the genus of the map
(using the Euler relation).

Let σ = (g; k1, . . . , kr) be a sequence of integers,
where g ≥ 0, and the ki’s are all positive. A map
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Figure 4: Top: a map of signature σ = (1; 5, 2, 3) (in the
ribbon graph representation). Bottom: the associated
core (the vertices that also belong to the kernel are
drawn gray).

M is said to be of signature σ if it has genus g and
r faces labelled as f1, . . . , fr, such that there are ki
marked corners ci,1, . . . , ci,ki in fi (among the deg(fi)
corners), labelled from 1 to ki so that these corners
occur in ccw order around fi, see Figure 4 (left part)
for an example. The marked vertices of such a map are
the vertices incident to at least one marked corner. Let
Mσ

n be the set of maps of signature σ with n edges.
As in the previous section, for M ∈ Mσ

n, the core
ξ(M) is the map obtained from M by greedily deleting
every non-marked leaf (and the incident edge) until all
leaves are marked, and the kernel κ(M) is obtained from
ξ(M) by erasing all non-marked vertices of degree 2 (see
Figure 4). Every edge of κ(M) is naturally equiped
with a length-parameter to record the length of the
corresponding path in ξ(M). We now define a map-
skeleton of signature σ as a map of signature σ where all
vertices have degree in {1, 3}, and the marked vertices
are all the leaves. The set of map-skeletons of signature
σ is denoted by Sσ. By the Euler relation the number
m ≡ m(σ) of edges of every S ∈ Sσ is given by

m(σ) = 6g − 6 + 3r + 2(k1 + · · ·+ kr).

A map-skeleton with edge-lengths is a map-skeleton S
where every edge is assigned a positive value called its
length. The total length over all edges is denoted L(S),

and the set of map-skeletons of signature σ with edge-
lengths is denoted Sσ. A distribution on Sσ is called
length-uniform if it is obtained by:

• picking S ∈ Sσ uniformly at random, and ordering
its m edges arbitrarily as e1, . . . , em;

• drawing (independently of S) the total length L
of S under a given distribution with support on
{x > 0};

• drawing a random split of L into m parts, as
L = λ1 + · · ·+λm, and assigning length λi to ei for
1 ≤ i ≤ m.

The Exp-uniform distribution on Sσ is the one where
L is drawn from a Gamma law of parameter m; this is
equivalent to drawing independently the length of every
edge according to an Exp(1) law. On the other hand,
the Map-uniform distribution on Sσ is the one where
L is drawn under the probability density fm(x) given
by (2.1). When n → ∞ and M is drawn uniformly at
random in Mσ

n, the kernel κ(M), with its edge-lengths
divided by

√
n, converges to a random map-skeleton

S ∈ Sσ under the Map-uniform distribution.
It is also possible to describe directly the scaling

limit of M . (We do not know of a reference to pre-
cisely define this scaling limit theorem in the literature,
but it may be deduced from results of [ABBG10].) The
so-called continuum random map of signature σ (abbre-
viated to CRMσ) is described as follows:

• draw a skeleton S ∈ Sσ uniformly at random, and
order (arbitrarily) its edges as e1, . . . , em;

• independently sample a vector (X1, . . . , Xm)
with Dirichlet distribution of parameters
(1/2, 1/2, ..., 1/2);

• independently sample m independent CRTs
T1, . . . , Tm, each with two uniformly chosen points;

• rescale the tree Ti by Xi i.e., multiply the mass

measure by Xi and multiply distances by X
1/2
i ;

• for 1 ≤ i ≤ m, replace the edge ei of S by the
rescaled version of Ti, so that the two uniform
points match with the extremities of ei.

3.2 Equidistribution of the Voronoi and Inter-
val vectors. Let (M,d, µ) be the CRMσ. For 1 ≤ i ≤ r
and 1 ≤ j ≤ ki let ai,j be the leaf of label j in the
face fi. Let Ii,j be the part of M between ai,j and
ai,j+1 in the ccw contour of fi. We let Int(M, i) :=
(µ(Ii,1), . . . , µ(Ii,ki)), called the ith interval vector ofM .
The concatenation (Int(M, 1), . . . , Int(M, r)) of these
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vectors is called the interval-vector of M and is denoted
by Int(M). Moreover, we let A := {ai,j , 1 ≤ i ≤ r, 1 ≤
j ≤ ki} be the set of all labelled leaves and, for 1 ≤ i ≤ r
and 1 ≤ j ≤ ki we denote by

Ci,j := {p ∈M, d(p, ai,j) = d(p,A)}

the Voronoi cell of the leaf ai,j . We let Vor(M, i) :=
(µ(Ci,1), . . . , µ(Ci,ki)), called the ith Voronoi vector of
M . The concatenation (Vor(M, 1), . . . ,Vor(M, r)) of
these vectors is called the Voronoi-vector of M and is
denoted by Vor(M).

Our main result is the following generalization of
Theorem 5:

Theorem 6. Let σ = (g; k1, . . . , kr) where g ≥ 0,
k1, . . . , kr are positive, and g + k1 + · · · + kr ≥ 2. Let
(M,d, µ) be the CRMσ. Then Vor(M) and Int(M) have
the same distribution.

Note that the law of Int(M) (and thus also of
Vor(M)) can be described as follows. If we let
gσ(t1, . . . , tr) be the joint probability density function
(with support on {t1 + · · · + tr = 1}) of the contour-
lengths of f1, . . . , fr in the CRMσ, then the law of
Int(M) is as follows:

• L1, . . . , Lr is drawn according to the density
gσ(t1, . . . , tr),

• for 1 ≤ i ≤ r, Int(M, i) is drawn as a uniform
random split of Li into ki parts.

In principle, it should be possible to compute algorith-
mically the density gσ(t1, . . . , tr) for any fixed σ. When
g = 0, this density is easily obtained from exact enu-
meration results (for example from Tutte’s slicings for-
mula [Tut62]) and this gives Theorem 4.

When r = 1, the CRMσ is a continuum random map
with only one face, that we call the continuum random
unicellular map of genus g, or CRUM. Of course the
density gσ is trivial when r = 1 (it is a Dirac distribution
at 1). In that case, for σ = (g; k), M corresponds to a
CRUM of genus g with k random leaves, and Vor(S)
is thus a uniform split of 1 into k parts, which yields
Theorem 3.

Proof of Theorem 6. Similarly to the tree case, and by
the same arguments as in Lemma 1, we can first reduce
proving Theorem 6 to proving the following statement:

(?) for S ∈ Sσ under the Map-uniform distribution,
the random vectors 2Vor(S) and Int(S) are equidis-
tributed.

As in Lemma 2, the latter is equivalent to:

(??) for S ∈ Sσ under the Exp-uniform distribution,
the random vectors 2Vor(S) and Int(S) are equidis-
tributed.

As for trees (but with more cases) we prove (??)
by induction on the number m = m(σ) of edges, the
size of the signature. In the case m = 1, the signature
has to be (0; 2) (tree with two leaves) and the property
has already been proved in Lemma 3. We now assume
that m ≥ 2 (thus all leaves are adjacent to a vertex
of degree 3), and that (??) holds for all signatures of
smaller size. For smaller size it will be convenient to
allow the set F of face-labels to be any given set of
integers (not necessarily of the form {1, . . . , h}), which
does not affect the equidistribution property.

Pick up S ∈ Sσ under the Exp-uniform distribution.
The strategy of the proof is again to look for the shortest
edge e among those incident to leaves. We keep the
same terminology and notation as for tree-skeletons,
i.e., the length of e is denoted by x, the extremity of
e of degree 1 (resp. 3) is called the fuse-leaf (resp. the
fuse-node ν); the two edges after e in ccw order around
ν are denoted e′, e′′; and the corner between e′ and e′′

is called the fuse-end corner. The face containing the
fuse-leaf is called the fuse-face. We then consider the
burning operation that consists in shortening by x the
length of every edge incident to a leaf; this way the fuse-
leaf is merged with ν, which gets of degree 2, and we can
then cut at ν to turn it into two leaves (one at e′, the
other at e′′). We let Ŝ be the resulting ‘map’ (it might
not be connected) with edge-lengths. We have now 3
possible situations, as shown in Figure 5 (for trees, only
the first case was possible):

Cut: Ŝ has two connected components (in that
case ν is necessarily incident to a single face in S).

Split: the fuse-node ν is incident to a single face f
in S, but Ŝ is still connected. In that case, cutting
at ν has the effect of splitting f into two faces, while
decreasing the genus by 1.

Merge: the fuse-node ν is incident to two different
faces f, f ′ (where by convention f is the one
incident to the fuse-leaf). In that case, Ŝ is
still connected, the genus remains unchanged, and
cutting at ν has the effect of merging f ′ into f .

We are going to show that conditioned on each
of the 3 cases, the vectors 2Vor(S) and Int(S) are
equidistributed.

Proof in the cut case. This case is similar to trees, with
some more notation. We let i0 be the label of the fuse-
face f of S, and let ` be the label of the fuse-leaf within
f . Let U, V be the two connected components of Ŝ,
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cut
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split

Figure 5: The 3 possible cases when cutting at the fuse-
node ν (in each case the fuse-leaf is surrounded, labels
are not indicated).

with U (resp. V ) the one containing e′ (resp. e′′). In U
and V the root-face is the face resulting from splitting
f , and the root-leaf is the one resulting from splitting ν.
In U and V the face-labels are retained to be the same
as in S, but the leaves in the root-face are relabelled
starting from 1 and increasing by 1 in ccw order around
the face, with label 1 at the root-leaf.

Let σ1 be the signature of U and σ2 the signature
of V . Since the fuse-leaf acts as a random leaf of S, and
by the memoryless property of the exponential law, U
(resp. V ) is in Sσ1 (resp. in Sσ2) under the Exp-uniform
distribution. Let B ⊂ [1..r]\{i0} be the set of labels of
the non-root faces that appear in U . Then clearly, for
i 6= i0, we have (with the notation x + ~v introduced in
the proof of Lemma 3):

Vor(S, i) = x+ Vor(U, i) if i ∈ B,
Vor(S, i) = x+ Vor(V, i) if i /∈ B.

Let p (resp. q) be the number of leaves of U (resp. V )
within its root-face. Let (u1, . . . , up) := Vor(U, i0) and
(v1, . . . , vq) := Vor(V, i0). Then, as for trees, it is easy
to see that (with the definition of `-shift given in the
proof of Lemma 3)

Vor(S, i0)=`−shift of x+(u1+v1, v2, . . . , vq, u2, . . . , up).

Regarding interval vectors, as for trees, we proceed
similarly except that ` is now the label of the interval
containing the fuse-end corner, and U is the component
containing e′′, and V the one containing e′. Another
difference is that the root-leaf is given label 2 in U (so
that it is at the end of the first interval in the root-face
of U). Again if σ1 (resp. σ2) denotes the signature of
U (resp. V ) then U is in Sσ1 (resp. in Sσ2) under the
Exp-uniform distribution. Letting B ⊂ [1..r]\{i0} be
the set of labels of the non-root faces that appear in U ,
we get for i 6= i0

Int(S, i) = 2x+ Int(U, i) if i ∈ B,

Int(S, i) = 2x+ Int(V, i) if i /∈ B.
Moreover, with p (resp. q) the number of leaves of U
(resp. V ) in the root-face, and with (ũ1, . . . , ũp) :=
Int(U, i0) and (ṽ1, . . . , ṽq) := Int(V, i0), we have

Int(S, i0)=`−shift of 2x+(ũ1+ṽ1, ṽ2, . . . , ṽq, ũ2, . . . , ũp).

Hence, for Vor (resp. for Int), if we condition on
the label of the fuse-face and on the signature of the
component U containing e′ (resp. e′′), on the set of
face-labels in U and on the label ` of the fuse-leaf (resp.
of the interval containing the fuse-end corner), we find
(using the fact that the equidistribution property holds
for smaller sizes) that the conditioned vector 2Vor(S) is
distributed as the conditioned vector Int(S). Summing
over all possible conditioning events we conclude that
2Vor(S) and Int(S) are equidistributed in the cut-case.

Proof in the split case. The proof is similar to the cut
case (in both cases a face is split into two faces, the only
difference is that in the cut case we get two connected
components). Regarding the Voronoi vectors, we let i0
be the label (in S) of the fuse-face f , and ` the label of
the fuse-leaf. The face f is split into two faces f ′, f ′′,
with f the one containing e′ and f ′′ the one containing
e′′. We keep label i0 for f ′ and give label 0 to f ′′. The
number of leaves in f ′ (resp. f ′′) is denoted p (resp. q)
and the leaf of label 1 in f ′ (resp. f ′′) is the one incident
to e′ (resp. e′′). Let σ̂ = (g−1, q, k1, . . . , p, . . . , kr) (with
p replacing ki0) be the induced signature of Ŝ. Then, as
before, Ŝ is in S σ̂ under the Exp-uniform distribution.
We have

Vor(S, i) = x+ Vor(Ŝ, i) for i ∈ {1, . . . , r}\{i0}.

We let (u1, . . . , up) := Vor(Ŝ, i0) and (v1, . . . , vq) :=

Vor(Ŝ, 0). Then we have

Vor(S, i0)=`−shift of x+(u1+v1, v2, . . . , vq, u2, . . . , up).

For the interval vectors, we now let ` be the label of the
interval containing the fuse-end corner, give label i0 to
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f ′′ and label 0 to f ′, and let p be the number of leaves
in f ′′ and q the number of leaves in f ′. In f ′ we still
give label 1 to the leaf at e′, but in f ′′ we now give label
2 to the leaf at e′′. As before Ŝ follows the Exp-uniform
distribution for the induced signature σ̂. We have

Int(S, i) = 2x+ Int(Ŝ, i) for i ∈ {1, . . . , r}\{i0}.
Let (ũ1, . . . , ũp) := Int(Ŝ, i0) and (ṽ1, . . . , ṽq) :=

Int(Ŝ, 0). Then we have

Int(S, i0)=`−shift of 2x+(ũ1+ṽ1, ṽ2, . . . , ṽq, ũ2, . . . , ũp).

Similarly to the cut case, by summing over all possible
conditioning events and using induction, we conclude
that 2Vor(S) and Int(S) are equidistributed in the split
case.

Proof in the merge case. In this case, the fuse-face f is
merged with the face f ′ on the other side of ν (the face
containing the fuse-end corner). Regarding the Voronoi
vectors, we let (in S) i0 be the label of f , i1 the label of
f ′, `0 the label of the fuse-leaf (within f), `1 the label
of the interval containing the fuse-end corner (within
f ′), p the number of leaves in f and q the number of
leaves in f ′. In Ŝ we give label i0 to the merged face,
which has k = p+ q+ 1 leaves; the leaf of label 1 within
the merged face is chosen to be the one at the edge e′′.
Again Ŝ follows the Exp-uniform distribution for the
induced signature σ̂. We have

Vor(S, i) = x+ Vor(Ŝ, i) for i ∈ {1, . . . , r}\{i0, i1}.
If we let (u1, . . . , uk) := Vor(Ŝ, i0) then we have

Vor(S, i0) = `0−shift of x+ (u1 + up+1, u2, . . . , up),

Vor(S, i1) = `1−shift of x+ (uk, up+2 . . . , uk−1).

Regarding the interval vectors, we now let (in S) i0 be
the label of f ′ and `0 the label of the interval containing
the fuse-end corner, let i1 be the label of f and `1 the
label of the interval (in f) along the edge e′, and let
p be the number of leaves of f ′ and q the number of
leaves of f . In Ŝ we give label i0 to the merged face,
that has k = p+ q + 1 leaves; the leaf of label 1 within
the merged face is chosen to be the one at the edge e′.
Again Ŝ follows the Exp-uniform distribution for the
induced signature σ̂. We have

Int(S, i) = 2x+ Int(Ŝ, i) for i ∈ {1, . . . , r}\{i0, i1}.
If we let (ũ1, . . . , ũk) := Int(Ŝ, i0) then we have

Int(S, i0) = `0−shift of 2x+ (ũ1 + ũp+1, ũ2, . . . , ũp),

Int(S, i1) = `1−shift of 2x+ (ũk, ũp+2 . . . , ũk−1).

As in the other cases, we conclude (summing over
all conditioning events) that 2Vor(S) and Int(S) are
equidistributed in the merge-case.

This concludes the proof of Theorem 6. �

T1 T2 T3 T4 T5

T10 T9 T8 T7 T6

1 2

T9 T10 T1 T2 T3

T8 T7 T6 T5 T4

1 2

⇓

Figure 6: Example of the bijection for k = 2 (s = 5
here).

4 A bijective proof of Theorem 5

We present here a proof of Theorem 5 as an explicit
bijection on (a subfamily of) T kn that asymptotically
maps (with the definitions given after the statement of
Theorem 5) the Voronoi vector to the interval vector.
Let us mention that a bijective proof of Theorem 6 can
also be obtained, along very similar lines.

Before describing the construction, we introduce a
bit of terminology. For T ∈ T kn and A = {a1, . . . , ak}
the set of marked vertices, the strict Voronoi cell of ai
is the set of vertices v ∈ T that are not in the core of
T , and which are such that d(v, ai) < d(v, aj) for j 6= i.
The strict i’th interval of T is the set of vertices in the
i’th interval that are not in the core of T .

We prove the following:

Theorem 7. For every fixed k ≥ 2 there is a subfamily
Akn ⊂ T kn , satisfying |Akn|/|T kn | = 1 − O(n−1/2), and
a bijection Φ on Akn that preserves the size (number of
vertices) of the core, and such that for T ∈ Akn and
R = Φ(T ), every vertex in the strict Voronoi cell of ai
in T corresponds to a vertex in the strict i’th interval of
R, for each 1 ≤ i ≤ k.

The bijection (which essentially emulates the con-
struction on tree-skeletons given in the proof of
Lemma 3) works by induction on k ≥ 2; the subfam-
ily Akn is also defined by induction (simultaneously with
the bijection) and satisfies A2

n = T 2
n . We present it first

for k = 2 (where the construction is easier) and then for
k ≥ 3.

4.1 The bijection for k = 2. Let T ∈ T 2
n . Let P be

the path connecting the two marked vertices a1, a2, let
s := length(P ) + 1. Starting at the marked corner c1
and turning clockwise around P we see a sequence of 2s
attached subtrees T1, . . . , Ts, Ts+1, . . . , T2s. Then R =
Φ(T ) is obtained by keeping P untouched and “sliding”
the sequence of attached subtrees along, to the effect
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that Ti replaces T(i+bs/2c) mod 2s, see Figure 6. Note
that the vertices of the strict Voronoi cell (in T ) of a1 are
those in the subtrees T2s−bs/2c+1, . . . , T2s, T1, . . . , Tbs/2c.
The sliding operation lets these trees replace the trees
T1, . . . , T2bs/2c, which are in the first interval of T .
Similarly the vertices of the strict Voronoi cell of a2
are sent to vertices in the strict second interval of R.
This construction thus proves Theorem 7 for k = 2.

4.2 The bijection for k ≥ 3. The construction for
k ≥ 3, illustrated in Figure 7, works by induction on
k, so we assume that Theorem 7 already holds for all
values in {2, . . . , k − 1}. Let T ∈ T kn , and let ξ(T )
be the core of T , and κ(T ) the kernel of T , where
every edge e is equipped with a length L(e) to record
the length of the associated path in ξ(T ). If κ(T ) has
vertices of degree not in {1, 3} or if there is a marked
vertex that is not a leaf of κ(T ), then we report a failing
situation and abort the contruction (the subfamily Akn
will be specified as the subfamily of T kn where no failing
situation has occured). Otherwise, we let e be the
shortest edge, called the fuse-edge, among the k edges
of κ(T ) that are connected to a leaf (if there is a tie,
we again report a failing situation and abort). The
extremity of e of degree 1 (resp. 3) is called the fuse-leaf
(resp. fuse-node ν). We let ` be the label of the fuse-leaf.
The two edges (in ξ(T )) after e in ccw order around ν
are denoted e′, e′′; and the corner of ξ(T ) between e′ and
e′′ is called the fuse-end corner. The subtree attached
at that corner is denoted Z.

Let b be the length of e; and for i ∈ {1, . . . , k} let
Pi be the path of length b in ξ(T ) that ends at the leaf
ai; we let Gi (resp. Hi) be the set of subtrees that are
attached at the b positions that precede (resp. follow) ci
in a cw walk along ξ(T ) (the first tree in G` is denoted
Y and will be used later). We then delete Pi and the
attached groups Gi, Hi, and update the marked corner
ci accordingly. This way ν gets degree 2 in the core, and
it has a marked corner (inherited from c`). We then cut
at ν, doing the incision at the marked corner inherited
from c`, and so that Z sits in the right-hand part, as
shown in Figure 7 (2nd picture). After cutting, we get
two trees U, V , where U is the one containing e′ (resp.
e′′). In each of the two trees there is a marked corner
resulting from cutting at ν, which we consider as marked
and call the root-corner. We move the retained subtree
Y to the position just after the root-corner of U ; and
we then relabel the marked corners in U (resp. V ) in
the unique way such that the root-corner gets label 1.

Let p (resp. q) be the number of marked corners in
U (resp. V ); note that p, q ≥ 2 and p+q = k−1, so p and
q are smaller than k and we can use induction. If U /∈ Ap
or V /∈ Aq (with the general notation Aj = ∪nAjn) then

Ỹ
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6
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2
3

4

5

G2

H2

G3 H3

G4

H4

G5

H5G6

H6G1

H1

Y

Z

Z

Ỹ

Z̃

Z

G3

H3

G4

H4

G5

H5
G6

H6

G1

H1

G2

H2

Z̃

1

23

4

1

12

2

3

1

2

4

3

3

4

5

6

1

2

3

Figure 7: Example of the bijection for k ≥ 3 (here k = 6
and b = 2, attached subtrees on the core are represented
as blobs).
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Figure 8: Property of the bijection: if T is a
tree and R its image by the bijection, then the 1-
dimensional Voronoi vector of the core of T (here
equal to (3.5, 5, 6, 4, 4.5, 5), the dashed lines indicating
the frontiers between cells), when multiplied by two,
matches with the interval vector of the core of R (here
equal to (7, 10, 12, 8, 9, 10)).

we report a failing situation and abort. Otherwise we
consider the images Φ(U) and Φ(V ) of U and V by the
bijection. We let Z̃ be the attached subtree just before
corner 2 in Φ(U), and Ỹ be the attached subtree just
after corner 1 in Φ(V ), which we detach from Φ(V ).
As shown in the right-hand part of Figure 7, we can
then merge corner 2 of Φ(U) with corner 1 of Φ(V ) (so
that their first intervals get merged), and let a path
of length b grow out of every marked corner and out
of the newly formed vertex (this path is grown in the
opposite direction from the one it grew in T ), and then
we label the marked corners so that the merged interval
gets label ` (hence the label of this interval, which is 3 in
Figure 7, matches with the label of the fuse-leaf of T ).
Finally we reinsert onto the grown paths the attached
trees that were taken from T , in such a way that the
groups Gi and Hi (those in the ith Voronoi cell of T )
sit in the ith interval of the obtained tree (for the special
case of the first tree in G`, we put the detached tree Ỹ
there). We declare the obtained tree R ∈ T kn to be the
image of T by Φ; and we let Akn be the set of trees in
T kn where the construction succeeds (no failing situation
occurs).

It is easy to derive the inverse mapping and check
(by induction on k) that Φ is a bijection that maps Akn

to itself. By induction on k one can also check that
attached subtrees (on the core of T ) contributing to
the strict i’th Voronoi cell of T are sent to attached
subtrees (on the core of R) contributing to the strict i’th
interval of R. To that effect a closely related property
(also readily checkable by induction on k) is that if we
consider the core of T to be a 1-dimensional metric space
(as we did with skeletons in Section 2), then the vector
giving the total lengths of the respective cells matches
(upon multiplication by 2) the vector giving the lengths
of the intervals of the core of R; see Figure 8.
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